Modeling the Interaction of Terahertz Pulse with Healthy Skin and Basal Cell Car- Cinoma Using the Unconditionally Stable Fundamental Adi-fdtd Method
نویسندگان
چکیده
This paper presents the application of unconditionally stable fundamental finite-difference time-domain (FADI-FDTD) method in modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma (BCC). The healthy skin and BCC are modeled as Debye dispersive media and the model is incorporated into the FADIFDTD method. Numerical experiments on delineating the BCC margin from healthy skin are demonstrated using the FADI-FDTD method based on reflected terahertz pulse. Hence, the FADI-FDTD method provides further insight on the different response shown by healthy skin and BCC under terahertz pulse radiation. Such understanding of the interaction of terahert pulse radiation with biological tissue such as human skin is an important step towards the advancement of future terahertz technology on biomedical applications.
منابع مشابه
Simulating the Response of Terahertz Radiation to Basal Cell Carcinoma Using Double Debye model and FDTD Method
Terahertz(THz) imaging provided a good contrast between skin cancer (basal cell carcinoma BCC) and healthy tissue in vitro and ex vivo owing to the high water content and strong absorption of cancer tissue at THz frequencies .Modeling the propagation of a THz pulse through BCC would contribute to revealing the diagnostic and potential therapeutic application value of THz radiation. In this lett...
متن کاملModeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/...
متن کاملNumerical Dispersion Analysis of the Unconditionally Stable 3-D ADI–FDTD Method
This paper presents a comprehensive analysis of numerical dispersion of the recently developed unconditionally stable three-dimensional finite-difference time-domain (FDTD) method where the alternatingdirection-implicit technique is applied. The dispersion relation is derived analytically and the effects of spatial and temporal steps on the numerical dispersion are investigated. It is found tha...
متن کاملUnconditionally Stable Leapfrog Adi-fdtd Method for Lossy Media
This paper presents an unconditionally stable leapfrog alternating-direction-implicit finite-difference time-domain (ADIFDTD) method for lossy media. Conductivity terms of lossy media are incorporated into the leapfrog ADI-FDTD method in an analogous manner as the conventional explicit FDTD method since the leapfrog ADI-FDTD method is a perturbation of the conventional explicit FDTD method. Imp...
متن کاملGlobal modeling of nonlinear circuits using the finite-difference Laguerre time-domain/alternative direction implicit finite-difference time-domain method with stability investigation
This paper describes a new unconditionally stable numerical method for the full-wave physical modeling of semiconductor devices by a combination of the finite-difference Laguerre time-domain (FDLTD) and alternative direction implicit finite-difference time-domain (ADI-FDTD) approaches. The unconditionally stable method by using FDLTD scheme for the electromagnetic model and semi-implicit ADI-FD...
متن کامل